Brain Tumours : MGMT genomic rearrangements contribute to chemotherapy resistance in gliomas

Abstract

Temozolomide (TMZ) is an oral alkylating agent used for the treatment of glioblastoma and is now becoming a chemotherapeutic option in patients diagnosed with high-risk low-grade gliomas.

The O-6-methylguanine-DNA methyltransferase (MGMT) is responsible for the direct repair of the main TMZ-induced toxic DNA adduct, the O6-Methylguanine lesion. MGMT promoter hypermethylation is currently the only known biomarker for TMZ response in glioblastoma patients.

Here we show that a subset of recurrent gliomas carries MGMT genomic rearrangements that lead to MGMT overexpression, independently from changes in its promoter methylation. By leveraging the CRISPR/Cas9 technology we generated some of these MGMT rearrangements in glioma cells and demonstrated that the MGMT genomic rearrangements contribute to TMZ resistance both in vitro and in vivo.

Lastly, we showed that such fusions can be detected in tumor-derived exosomes and could potentially represent an early detection marker of tumor recurrence in a subset of patients treated with TMZ.

You may also be interested in these resources

News / Events

Festival Of Genomics January 2025

We help you navigate a complex genomics ecosytem OncoDNA understands the complexities of the personalized medicine ecosystem and leverages over 10 years of expertise in genomic profiling to guide laboratories and oncologists in their use...

Video

Voice Of Customer – Episode 2

In this episode, Pr. Daniela Cesselli (University of Udine) discusses the strategic needs that drove the adoption of a CGP panel and the reasons behind choosing the 𝗢𝗻𝗰𝗼𝗗𝗘𝗘𝗣® 𝗞𝗶𝘁 solution. Was it to ensure timely...

Share This